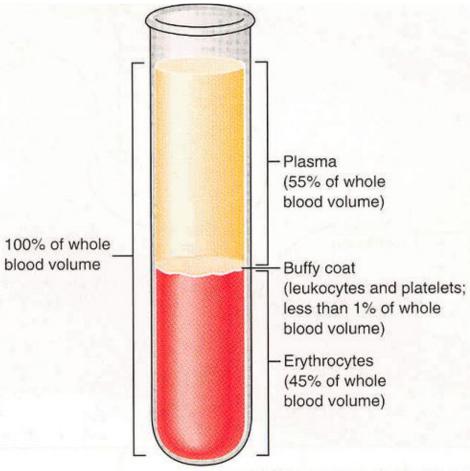
Function of Blood


- Blood transports everything that must be carried from one place to another, such as:
 - Nutrients
 - Wastes
 - Hormones
 - Body heat

Physical Characteristics of Blood

- Sticky, opaque fluid
- Heavier and thicker than water
- Color range
 - Oxygen-rich blood is scarlet red
 - Oxygen-poor blood is dull red or purple
- Metallic, salty taste
- Blood temperature is slightly higher than body temperature, at 38°C or 100.4°F

Components of Blood

- Blood is the only fluid tissue, a type of connective tissue, in the human body
- Components of blood
 - 55% Plasma
 - Nonliving fluid matrix
 - 45% Formed elements
 - Living cells

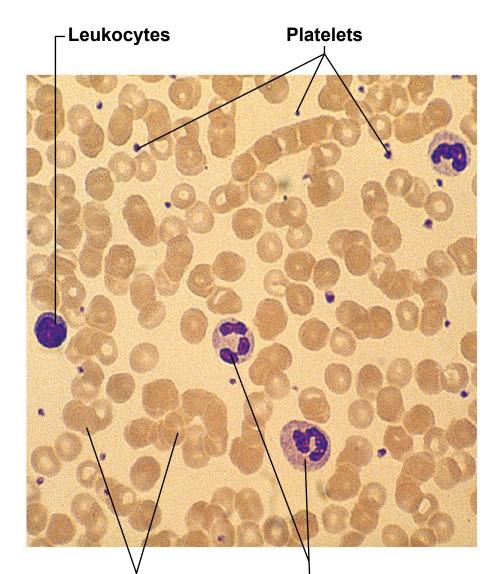
Plasma

90% water

- Straw-colored fluid
- Includes many dissolved substances:
 - Nutrients
 - Electrolytes (salt)
 - Respiratory gases
 - Hormones
 - Plasma proteins (aid in clotting, contain antibodies)
 - Waste products

Formed Elements

Erythrocytes


- Red blood cells (RBCs)
- Transport oxygen

Leukocytes

- White blood cells (WBCs)
- Defense and immunity

Platelets

- Cell fragments
- Blood clotting

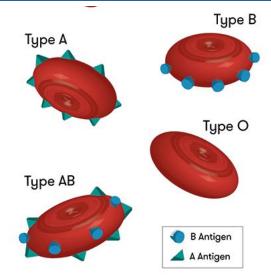
Erythrocytes

Leukocytes

 Blood types are based on the presence or absence of two antigens

- Antigen (Agglutinogen)
 - Plasma membrane protein found on the surface of red blood cells
 - Substance that the body recognizes as foreign and activates the immune system

Antibodies


• The "recognizers" of antigens are **antibodies**

- Antibodies (Agglutinins)
 - Present in blood plasma
 - Attach to RBCs with surface antigens different from those on their own RBCs
- Binding of antibodies to antigens causes the RBCs to clump (agglutination), which leads to the clogging of small blood vessels throughout the body
 - This would occur if a blood transfusion occured with the incorrect blood type
 - Can cause kidney failure or even death

Human Blood Types

Type AB

- Presence of both antigens A and B
- Lack of antibodies
- Can receive blood from A, B, AB, and O
 - Universal recipient
- Can give blood to AB
- Type A
 - Presence of antigen A
 - Produces anti-B antibody
 - Can receive blood from A and O
 - Can give blood to A, AB

Human Blood Types

- Type B
 - Presence of antigen B
 - Produces anti-A antibody
 - Can receive blood from B and O
 - Can give blood to B or AB
- Type O
 - Lack of both antigens A and B
 - Produces anti-A and anti-B antibodies
 - Can receive blood from O
 - Can give blood to O, A, B, and AB
 - Universal donor

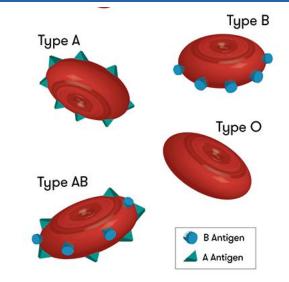


Table 10.3 ABO Blood Groups

Frequency (% of U.S. population)

Blood group	RBC antigens (agglutinogens)	Illustration	Plasma antibodies (agglutinins)	Blood that can be received	White	Black	Asian	Native American
AB	А, В	AB	None	A, B, AB, O "Universal recipient"	4	4	5	<1
В	В	Anti-A	Anti-A (a)	В, О	11	20	27	4
A	A	Anti-B	Anti-B (b)	Α, Ο	40	27	28	16
0	None	Anti-B Anti-A	Anti-A (a) Anti-B (b)	O "Universal donor"	45	49	40	79

Human Blood Types

- Rh Blood Type
 - Rh is an another antigen that is also used to identify human blood types
 - The presence or absence of Rh is indicated in human blood type as "positive or negative"
 - Rh⁺
 - Presence of Rh antigen
 - Rh⁻
 - Absence of Rh antigen

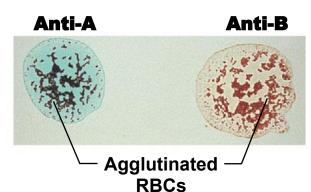
Blood Typing

- Blood samples are mixed with anti-A and anti-B serum
- Agglutination or the lack of agglutination leads to identification of blood type
- Rh factors is done in the same manner

Genetics of Blood Types

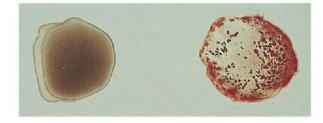
- The human ABO blood types are genetically inherited by the combination of 3 different alleles.
 - Allele I^A codes for the production of antigen A
 - Allele I^B codes for the production of antigen B
 - Allele i does not produce any antigens
- I^A and I^B are dominant over i
 - i is recessive

I^A and I^B are codominant


 When I^A and I^B are both present, they are both expressed

Blood being tested

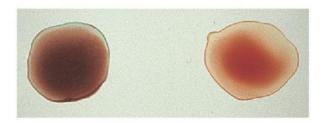
Serum


Type AB

(contains antigens A and B; agglutinates with both sera)

Type B

(contains antigen B; agglutinates with anti-B serum)


Type A

(contains antigen A; agglutinates with anti-A serum)

Type O

(contains no antigens; does not agglutinate with either serum)

