Evolution Versus Genetic Equilibrium

- If allele frequencies in a population do not change, the population is in genetic equilibrium.
- Genetic Equilibrium = NO Evolution

The Hardy-Weinberg Principle

- According to the Hardy-Weinberg principle, five conditions are required to maintain genetic equilibrium:
 - 1. Large population
 - 2. Random mating
 - 3. NO migration
 - 4. NO natural selection
 - 5. NO mutations

"Large Random MnM"

Condition 1: Large Population

- Genetic drift can cause changes in allele frequencies in small populations.
- Genetic drift has less effect on large populations.
- Large population size helps maintain genetic equilibrium.

Condition 2: Random Mating

- All members of the population must have an equal opportunity to produce offspring.
 Individuals must mate with other members of the population at random.
- In natural populations, however, mating is not random.

Condition 3: No Migration

- Individuals who join a population may introduce new alleles into the gene pool.
- Individuals who leave may remove alleles from the gene pool.
- Thus, for no alleles to flow into or out of the gene pool, there must be no movement of individuals into or out of a population.

Condition 4: No Natural Selection

- All genotypes in the population must have equal probabilities of surviving and reproducing.
- No phenotype can have a selective advantage over another.

Condition 5: No Mutations

- If mutations occur, new alleles may be introduced into the gene pool, and allele frequencies will change.
- Thus, for no alleles to flow into or out of the gene pool, there must be no mutations.