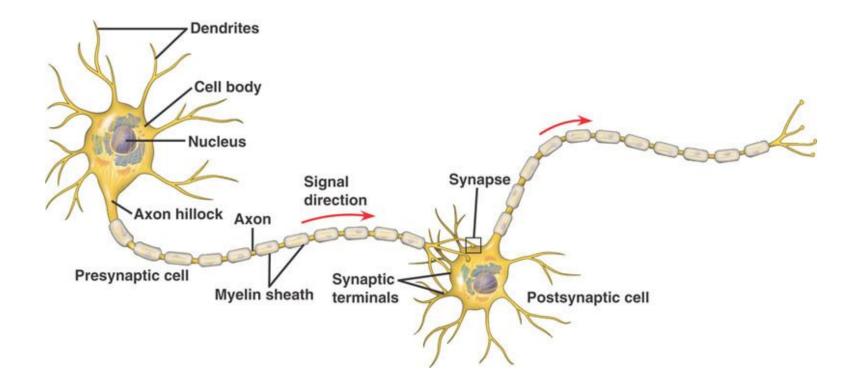

Neuron Functions

- The function of the nervous system is to gather information from stimuli, integrate this information, and produce a response.
- The nervous system depends on neurons to communicate information from sensory receptors to the CNS and back to an effector (a muscle or gland).


Neuron Functions

 Nerves are made up of many neurons bundled together.

Membrane Potential

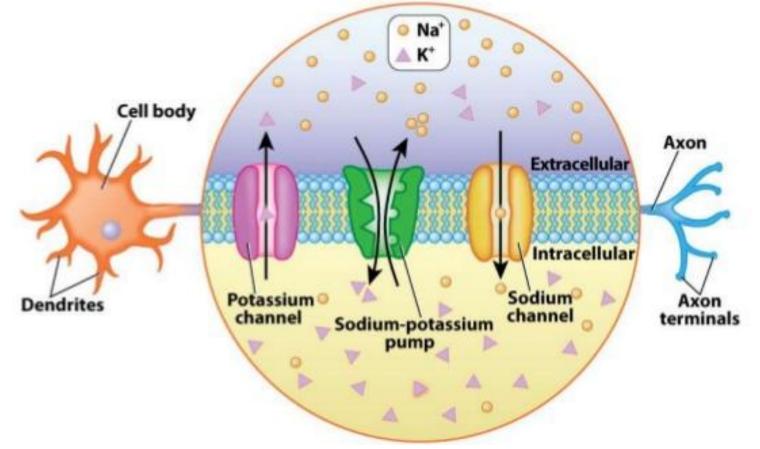
- How does a signal from a sensory receptor pass from neuron to neuron and travel to the CNS?
- Neurons communicate with one another through electrical signals along their axons.

Membrane Potential

- An electrical signal is created due to a difference in electrical charges (positive and negative) between the inside of the neuron and the surrounding extracellular fluid.
- The inside and outside of the neuron is separated by the plasma membrane.
 - lons <u>cannot</u> move freely in and out of the plasma membrane

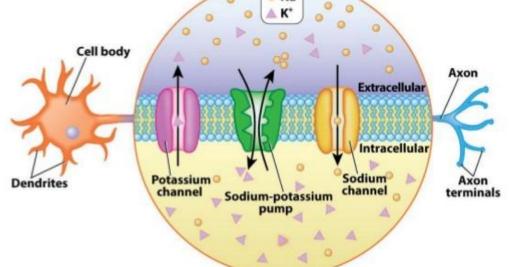
Membrane Potential

- The difference in electrical charge develops due to the grouping of ions on the inside and outside of the membrane.
 - The two ions that are important in an action potential are sodium (Na+) and potassium (K+)
- The difference in electrical charge between the inside and outside of the neuron is called the membrane potential.
 It is measured in millivolts (mV)


Resting Membrane Potential

• When a neuron is at rest, there are:

- More sodium ions outside the cell
- \circ More potassium ions inside the cell
- At rest, the inside of the neuron is more negative than the outside
- The resting membrane potential of a neuron is -70 mV
- The membrane potential represents stored electrical energy that can be used to do work


Ion Channels and Pumps

- The axon of a neuron has ion channels and pumps that act as doors through which ions enter and exit the cell
- There are 2 ion channels and 1 pump

Ion Channels and Pumps

- The channels and pumps allow only **SPECIFIC ions** to flow or be pumped through them.
 - \circ The sodium channel allows sodium ions
 - The potassium channel allows potassium ions
 - The sodium-potassium pump moves sodium ions
 OUT of the axon and moves potassium ions INTO
 the axon

Ion Channels and Pumps

- The channels are voltage-gated
 - This means that the channel will only open at a certain voltage
- The **sodium channels open** when the membrane potential is at **-55 mV**
- The potassium channels open when the membrane potential is at +40 mV
- The sodium-potassium pump requires ATP to operate

Action Potential

- When a neuron receives a stimulus, positive charged ions flow into the cell body
 - This causes the membrane potential to **depolarize**
 - Depolarize = inside of cell becomes less negative
- If the membrane potential reaches -55 mV, the sodium channels will open
- This potential (-55 mV) is the threshold that initiates the action potential
- The action potential is an **all-or-none response**